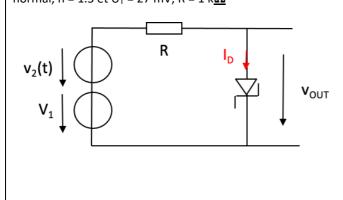

Exercice 1

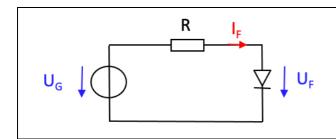

 $I_{zmin} = 5 \text{ mA}$ $I_{L} = 0.....50 \text{ mA}$ $V_{Z} = 10V$

- a) Dessiner l'allure de $v_1(t)$, $v_C(t)$ et V_Z sur le même graphique.
- b) Calculer R afin d'assurer les contraintes suivantes : v_{Cmin} (t) = 14 V, I_{LMAX} = 50 mA et I_{Zmin} = 5 mA
- c) Calculer la capacité de filtrage pour assurer en permanence une tension v_C(t) ≥ 14 V
- d) Calculer I_{Zmax}, en déduire la puissance instantanée maximum dissipée dans la diode Zener et dans R.

Exercice 2

On propose le montage suivant :

On donne : une diode Zener avec V_Z = 6V et Uj dans le sens normal, n = 1.5 et U_T = 27 mV, R = 1 k Ω



On demande:

- Calculer I_D et V_{OUT} lorsque V₁ = 10V, v₂(t) = 0,
- Calculer I_D et V_{OUT} lorsque $V_1 = -10V$, $v_2(t) = 0$,
- V₁ = 0, v₂(t) = 3 V d'amplitude : Dessiner sur un même graphe, les allures de v_{OUT} et de v₁, en précisant les zones où la diode est conductrice ou bloqué,
- $V_1 = 0$, $v_2(t) = 8V$ d'amplitude : Dessiner sur un même graphe, les allures de v_{OUT} et de v_1 , en précisant les zones où la diode est conductrice ou bloquée
- Calculer I_D, r_D et l'amplitude des signaux aux bornes de la diode lorsque, V₁ = 5V, v₂(t) = 3 V d'amplitude. Les calculs ci-dessus se justifient -ils et pourquoi?

Exercice 3 : Méthode pratique pour calculer la résistance différentielle

On propose le montage suivant

- $U_G = 3 + 0.5 \sin(2\pi ft)$ [V]
- f = 100 Hz
- $R = 2.2 k\Omega$

On donne $U_T = 26 \text{ mV}$, et n = 1.5

- a) Calculer le courant de repos I_{FO} et déterminer théoriquement la valeur de la résistance différentielle r_D correspondante.
- b) Il est possible de retrouver expérimentalement la valeur de cette résistance différentielle en mesurant les variations de tensions ΔU_G et ΔU_F . Exprimer la relation entre R, ΔU_G et ΔU_F donnant la valeur de r_D
- c) Refaire les mêmes calculs avec une composante continue de 10 V (au lieu de 3) pour u_G.